Gas chromatograph mass spectrometers (GC-MS) capable of excellent qualitative measurements are used in the analysis of aroma components in foods and beverages. The convenient sampling methods of SPME (solid-phase microextraction) and HS (headspace extraction) are increasingly used for sample introduction. However, sample introduction methods such as these can suffer from insufficient sensitivity when analyzing some aroma components. The ITEX DHS (in-tube extraction dynamic headspace) method was developed as a new sample introduction option for the AOC-6000 Multifunctional Autosampler to address this shortcoming. ITEX DHS allows analysis at higher sensitivities compared to the conventional headspace method by enriching headspace components contained in a vial into an adsorbent-filled syringe. This article presents the results of analyzing white wine aroma components using ITEX DHS.

K. Kawamura

Sample Introduction Using ITEX DHS
ITEX DHS involves repeatedly pumping a syringe inserted into the headspace area of a heated vial to enrich the adsorbent that fills the syringe’s needle with volatile components.

Sample and Analysis Conditions
A volume of 10 mL of commercially-available white wine poured into a 20 mL glass vial was used as the measurement sample. Table 1 lists the instruments and conditions used for analysis. For comparison, analysis was also performed using the conventional HS method.
■ Analysis Results

Fig. 2 shows the analysis results for HS and ITEX DHS. While the HS method only detected major components such as alcohols, esters, and carboxylic acids, the ITEX DHS method additionally detected peaks of other trace components. In addition to alcohols, esters, and carboxylic acids, the peaks of aldehydes, furanones, and sulfur-based compounds were detected. Moreover, sensitivity in the ITEX DHS method can be increased further by increasing the number of pumping repetitions during extraction. Fig. 3 shows a comparison of the peak areas of dimethyl disulfide, known for its sulfurous odor, and furfural, a known barrel aroma, across several pumping repetitions for HS and ITEX DHS.

![Fig. 2 TIC Comparison of HS and ITEX DHS](image)

**Fig. 2 TIC Comparison of HS and ITEX DHS**

![Fig. 3 Comparison of Peak Areas For Each Pumping Repetition for HS and ITEX DHS](image)

**Fig. 3 Comparison of Peak Areas For Each Pumping Repetition for HS and ITEX DHS**

Tenax is a registered trademark of Buchem B.V.

■ Conclusion

Trace components that prove difficult to detect using conventional HS can be analyzed with high sensitivity by employing ITEX DHS, which allows enrichment of volatile components.

For Research Use Only. Not for use in diagnostic procedure.

This publication may contain references to products that are not available in your country. Please contact us to check the availability of these products in your country.

The content of this publication shall not be reproduced, altered or sold for any commercial purpose without the written approval of Shimadzu. Shimadzu disclaims any proprietary interest in trademarks and trade names used in this publication other than its own. See [http://www.shimadzu.com/about/trademarks/index.html](http://www.shimadzu.com/about/trademarks/index.html) for details.

The information contained herein is provided to you "as is" without warranty of any kind including without limitation warranties as to its accuracy or completeness. Shimadzu does not assume any responsibility or liability for any damage, whether direct or indirect, relating to the use of this publication. This publication is based upon the information available to Shimadzu on or before the date of publication, and subject to change without notice.